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Abstract
A method for constructing time-step-based symplectic maps for a generic
Hamiltonian system subjected to perturbation is developed. Using the
Hamilton–Jacobi method and Jacobi’s theorem in finite periodic time intervals,
the general form of the symplectic maps is established. The generating function
of the map is found by the perturbation method in the finite time intervals.
The accuracy of the maps is studied for fully integrable and partially chaotic
Hamiltonian systems and compared to that of the symplectic integration method.

PACS numbers: 05.45.Ac, 05.60.Cd, 52.25.Fi

Mathematics Subject Classification: 37E40, 37J10, 37J40, 37M15, 70H09,
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1. Introduction

Many fundamental problems of physics and mechanics, whenever a dissipation is not
significant, may be modelled by Hamiltonian systems [1–3]. An n-degree-of-freedom system
can be described by 2n ordinary differential equations of first order in the phase space of
the canonical coordinates (p, q), canonical momenta p = (p1, . . . , pn), and coordinates
q = (q1, . . . , qn). One of the features of the Hamiltonian system is that it conserves certain
invariants in phase space, e.g., the symplectic form. In a numerical study of Hamiltonian
systems, it is important to preserve this property.

The standard numerical method used to integrate the system of ordinary differential
equations is not ideal for this purpose, because the numerical approximations introduce non-
Hamiltonian perturbations which lead to completely different long-term behaviour. For this
reason, special integration tools, known as symplectic integrators, have been developed for the
numerical study of Hamiltonian systems (see, for example, the reviews [4–6]). The methods
based on these preserve the properties of Hamiltonian systems by arranging each integration
step to be a canonical transformation. Symplectic integration methods play an important role
in the study of the long-time evolution of Hamiltonian systems.
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Symplectic maps constitute another powerful tool for studying Hamiltonian systems
[3, 7–9]. The maps are inherently constructed in the symplectic form, and thus they always
preserve the important properties of Hamiltonian systems. This approach is ideal for studying
the long-term evolution of a system, and especially in cases where the system exhibits chaotic
behaviour where there is an exponential divergence of orbits with close initial coordinates in
phase space. The symplectic maps have been successfully employed in many problems of
astronomy, plasma physics, fluid dynamics, accelerator physics, etc [3, 9–12].

Magnetic field lines provide an excellent example of a Hamiltonian system [13, 14]. The
flux-preserving property of the magnetic field is then formulated as symplecticness of the
Hamiltonian system. It allows one to model magnetic field lines in magnetic confinement
devices, such as tokamaks and stellarators, by flux-preserving maps [15–29]. The symplectic
maps have also been used to study the transport and mixing processes in plasmas [30,31] and
in structured fluids containing a variety of vortices, waves, jets, and fronts [32–37]. They are
also extensively employed in the simulation of single-particle motion in accelerators [38, 39].
Symplectic maps for the N -body problem have been proposed for the long-term evolution of
planetary systems in dynamical astronomy [40–42].

In spite of the extensive use of symplectic maps in many Hamiltonian problems during
last four decades, the derivation of symplectic maps from the Hamiltonian equations remains
elusive. There are several approaches for constructing symplectic maps. One approach is
based on the a priori assumption that the map has a symplectic form, and the generating
functions associated with the map are found from the equations of motion [3, 16, 18, 25, 38].
The well-known perturbed twist maps have been obtained in such a way.

Another method for constructing symplectic maps is based on the assumption that a
time-periodic perturbation acting on the integrable system may be replaced by periodic delta
functions, which is equivalent to adding fast-oscillating terms to the perturbed Hamiltonian.
This is justified by the averaging principle, i.e., by the fact that if the non-resonant high-
frequency terms do not play a noticeable role in the dynamics of the system, then adding these
terms does not significantly affect the evolution. The integration of the equations of motion
along delta functions gives such symplectic maps, with the time step equal to the period of
the perturbation [7, 40–43]. In particular, this method was used by Chirikov to derive the
celebrated standard map [7].

However, these methods of derivation of maps have significant shortcomings. The former
approach restricts possible symplectic forms of the maps and does not allow one to obtain
higher-order corrections to the generating function.

The use of delta functions causes, in general, other difficulties in the derivation of maps.
In many physical systems one studies a motion subjected to periodic perturbation in time (or
in space) with a broad spectrum of modes. Simple replacement of these perturbations by one
with an infinite number of modes gives rise periodic delta functions in time (or in space). Such
a procedure introduces artificial singularities and discontinuities which were not present in the
original system, and leads, in general, to the some uncertainty in the form of the maps because
of the poorly defined procedure of integration along the delta functions: a different asymptotic
representation of the delta function may give rise to a different form of map. For instance,
as was shown in [44], a symmetric representation of the delta function leads to a symmetric
form of the symplectic map. It turns out that the latter more closely describes the Hamiltonian
system than the asymmetric form of map known as the perturbed twist map.

Moreover, both approaches are unable to obtain the higher-order corrections to maps and
therefore to provide an estimate of the accuracy of the maps. The most serious deficiency of
the methods is that they cannot clearly distinguish between the map variables and those of the
original system. It is simply assumed that these variables are identical.
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A rigorous method for constructing Hamiltonian maps which does not have the above-
mentioned shortcomings has been recently proposed in [45, 46]. It is based on the method of
canonical change of variables which eliminates the perturbation in periodic time intervals. This
procedure transforms the perturbed system to a new one for which the motion is unperturbed
during the entire period except at discrete periodic time instants where all perturbation act
instantaneously as kicks. The relations between variables in the neighbouring time intervals
are found by making an inverse canonical change of variables to the old variables. In this way,
one can establish a symplectic mapping describing the evolution of the system’s old variables
in one period of perturbation. The changes of variables are given by generating functions
satisfying the Hamilton–Jacobi equations, which are solved using perturbation theory.

In the present work we develop a general method for constructing symplectic maps
for a Hamiltonian system with the arbitrary time steps. We will consider a generic
Hamiltonian system which may be presented as a sum of a completely integrable system and
a Hamiltonian perturbation. The perturbed part of the Hamiltonian is not necessarily small.
Using the Hamilton–Jacobi method—in particular Jacobi’s theorem—allows one to construct
a symplectic map by means of the canonical change of variables in a clear and transparent way.
The generating functions associated with the map are found by solving the Cauchy problem
for the Hamilton–Jacobi equations using the perturbation theory in finite time intervals. The
perturbation series for the generating functions obtained in this way does not contain divergent
terms due to small denominators (or small divisors), unlike the classical perturbation series
in an infinite time domain which represents the main difficulty encountered in the classical
perturbation theory (see [1, 2, 47, 48]).

One of the advantages of the method is that the accuracy of the mapping method does not
depend on the oscillation frequency of the system. This makes the method a very convenient
tool for integration of highly oscillatory Hamiltonian systems, unlike the standard symplectic
integrators whose accuracy deteriorates with the increase of the oscillation frequencies.

The paper consists of six sections and an appendix. In section 2 the basis of the Hamilton–
Jacobi method is recalled and the construction of the Hamiltonian maps using Jacobi’s theorem
is presented. The perturbation theory used for solving the Hamilton–Jacobi equation in
finite time intervals is developed in section 3. The different possible forms of the maps—
particularly the so-called perturbed twist maps and symmetric maps—and their accuracy are
discussed in section 4. In sections 5 and 6 the accuracy of the maps is studied for two
examples of Hamiltonian systems: a simple fully integrable one and a non-integrable one,
respectively. We also compared the mapping solutions with the exact solution and with
the conventional symplectic integration method. A summary and conclusions are given in
section 7. Calculations of the second-order generating function are presented in the appendix.

2. The Hamilton–Jacobi method for construction of maps

In this section we recall some basic principles of the Hamilton–Jacobi method for integrating
Hamiltonian equations [1]—in particular, Jacobi’s theorem—and derive a symplectic map
describing the time evolution of the system. The idea of the Hamilton–Jacobi method is to
find a canonical change of variables which reduces the Hamiltonian function to a form for
which the Hamiltonian equations are integrable. The canonical transformation of variables
is given by a generation function satisfying the Hamilton–Jacobi partial differential equation.
If we succeed in finding a complete integral, i.e., the solution of this equation depending on
n independent constants of motion (2n is the number of variables), then the dynamics of the
system will be determined by the generating function.
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However, in many generic non-integrable Hamiltonian problems the system does not have
n constants of motion, and the system may show chaotic behaviour. For these systems there
is no complete integral of the Hamilton–Jacobi equation.

Nevertheless, Jacobi’s theorem can be applied to these cases too, supposing that there
exist approximately n integrals of motion in finite time intervals. Then the evolution of the
system in each time interval is determined by Jacobi’s theorem. By matching the orbits in the
neighbouring time intervals, one can establish a long-term evolution of the system. Such a
procedure replaces the canonical equations of motion by symplectic Hamiltonian maps.

2.1. The Hamilton–Jacobi equation and Jacobi’s theorem

Let (q, p) (q = (q1, . . . , qn), p = (p1, . . . , pn)) be canonical variables of the n-degree-of-
freedom Hamiltonian system:

dq

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂q
, (1)

with H = H(q, p, t) as the Hamiltonian function. Suppose that a change of variables
(q, p) → (Q, P ) given by the 2n functions Q(q, p), P (q, p) of the 2n variables q, p

preserves certain invariants of the system and the form of the canonical equations (1) with
a new Hamiltonian H:

dQ

dt
= ∂H

∂P
,

dP

dt
= −∂H

∂Q
. (2)

We consider that the change of variables is given by the generating function S = S(q, P ) for
mixed variables, namely the old coordinates q and new momenta P :

p = ∂S(q, P, t)

∂q
, Q = ∂S(q, P, t)

∂P
, H = H +

∂S(q, P, t)

∂t
, (3)

and suppose that the new Hamiltonian H depends only on the canonical momenta P , i.e.,
H = H(P ). Then one can immediately integrate the Hamiltonian equations (2), which gives

Q = Q0 + �(P )(t − t0), P = P0 = constant (4)

where �(P ) = ∂H(P )/∂P is the oscillation frequency of the system in the new variables
(Q,P ). The generating function S(q, P, t) satisfies the Hamilton–Jacobi equation

H

(
q,

∂S

∂q
, t

)
+

∂S

∂t
= H(P ). (5)

As a partial differential equation, it may have a large number of solutions. The solution
S(q, P, t) of the Hamilton–Jacobi equation (5) which depends on the n independent constants
P1, . . . , Pn is called a complete integral of the equation if the following condition is satisfied:
det(∂2S/∂q∂P ) �= 0.

Jacobi’s theorem (see, e.g., [1]) states that if a solution S(q, P, t) is some complete
integral of the Hamilton–Jacobi equation, then solutions of the canonical equations (1) may
be represented by p = ∂S/∂q,Q = ∂S/∂P .

This means that the time evolution of the system is completely determined by the
generating function S(q, P, t). For instance, suppose that (q0, p0) are the initial coordinates
of the system at the time instant t = t0. Then, by means of the canonical transformation
(q0, p0) → (Q0, P0), equation (3), carried out by the generating function S at t = t0, we
can determine the corresponding new variables (Q0, P0). Since the time evolution of these
variables is known (4), the original variables (q(t), p(t)) at any time moment t > 0 may
be found by means of the backward canonical transformation (Q(t), P (t)) → (q(t), p(t)),
equation (3).
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2.2. Canonical transformation and mapping

For non-integrable Hamiltonian systems, for which one cannot find a complete integral of
the Hamilton–Jacobi equations, the evolution of the system does not obey Jacobi’s theorem.
Nevertheless, the idea of canonical transformations of variables may still be helpful for
studying these non-integrable Hamiltonian systems. Below, we describe a procedure of
canonical change of variables which reduces the canonical Hamiltonian equations to algebraic
Hamiltonian maps.

We consider the generic Hamiltonian problem, namely the fully integrable system with
Hamiltonian H0(q, p) subjected to the perturbation εH1(q, p, t) [1, 2]:

H = H(p, q, t) = H0(q, p) + εH1(q, p, t), (6)

where ε is a perturbation amplitude. The unperturbed motion (ε = 0) is integrable
and therefore one can introduce the action I = (I1, . . . , In) and angle variables θ =
(θ1, . . . , θn) (mod 2π ) [1]. The unperturbed Hamiltonian is H0 = H0(I ) and the motion
is conditionally periodic on the n-dimensional torus I = (I1, . . . , In) with the frequencies
ω(I) = ∂H0(I )/d I = (ω1, . . . , ωn), i.e., I = constant, θ = θ0 + ω(I)(t − t0).

The perturbed Hamiltonian H1(θ, I, t) is a 2π -periodic function of the angular variables
θ and it may be expanded in a Fourier series:

H1(I, θ, t) =
∑
m,n

Hmn(I ) exp(imθ − in�t). (7)

In the presence of a perturbation (ε �= 0), some (or all) of the integrals of motion I =
(I1, . . . , In) may be destroyed, and the system is non-integrable. In order to study the time
evolution of the system in this case, we intend to construct a map

(θk+1, Ik+1) = T̂ (θk, Ik), (8)

connecting the variables θk = θ(tk), Ik = I (tk) at the sequence of periodic time instants
tk = 2τk (k = 0,±1,±2, . . .) with a duration τ .

However, unlike in the canonical transformation over infinite time intervals (see
section 2.1), we perform a change of variables (θ, I ) → (J,�) only in the time interval
tk < t < tk+1, i.e., the new Hamiltonian H is H(J ) (and therefore � = �0 + �(J, t ′)(t − t0),
J = constant, �(J ) = dH(J )/dJ ) in the interval tk < t < tk+1. The generating function
S(θ, J, t) for such a transformation satisfies the Hamilton–Jacobi equation in this time interval:

H0

(
∂S

∂θ

)
+ εH1

(
θ,

∂S

∂θ
, t

)
+

∂S

∂t
= H(J ). (9)

For the unperturbed system (ε = 0), the generating function has the following expression:

S(0)(θ, J, t) = θJ − H0(J )t + H(J, t)t, (10)

and according to the Jacobi theorem the equations of motion are

I = ∂S(0)(θ, J, t)

∂θ
, � = ∂S(0)(θ, J, t)

∂J
= θ − ωt + �(J )t, (11)

where� andJ are constants of motion. In the new variables (�, J ), the equations of motion (2)
are integrable and have the solutions (4). Then from (4) and (11) there follows the map

Ik+1 = Ik, θk+1 = θk + ω(J )(tk+1 − tk). (12)

Consider the effect of perturbation supposing that the generating function in this case has
an ansatz

S(θ, J, t; ε) = S(0)(θ, J, t) + εS(1)(θ, J, t; ε), (13)
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where εS(1)(θ, J, t; ε) is the perturbation part of the generating function determined from the
Hamilton–Jacobi equation (9). Then according to Jacobi’s theorem the equations of motion
are

I = ∂S(θ, Jk, t; ε)
∂θ

= Jk + ε
∂S(1)(θ, Jk, t; ε)

∂θ
,

� = ∂S(θ, Jk, t; ε)
∂Jk

= θ − ωt + �(Jk)t + ε
∂S(1)(θ, Jk, t; ε)

∂Jk

,

(14)

where Jk is a constant of motion within the time interval tk � t � tk+1.
It follows from (14) that the coordinates (θ(t), I (t)) of the trajectory at any moment of

time t (tk � t � tk+1) with the initial coordinates (θk, Ik) at the time instant t = tk may be
found by making successive canonical transformations: the first one transforms the original
variables (θk, Ik) to the new ones (�k, Jk), and the second one transforms (�k, Jk) back to the
old variables at the time instant t :

Ik = ∂S(θk, Jk, tk; ε)
∂θk

, �k = ∂S(θk, Jk, tk; ε)
∂Jk

, (15)

I (t) = ∂S(θ(t), Jk, t; ε)
∂θ(t)

, �(t) = ∂S(θ(t), Jk, t; ε)
∂Jk

= �k + �(Jk)(t − tk). (16)

This allows us to construct the map (8) in the form

Jk = Ik − ε
∂S

(1)
k

∂θk
, �̄k = θk + ε

∂S
(1)
k

∂Jk

, (17)

�̄k+1 = �̄k + ω(tk+1 − tk), (18)

Ik+1 = Jk + ε
∂S

(1)
k+1

∂θk+1
, θk+1 = �̄k+1 − ε

∂S
(1)
k+1

∂Jk

, (19)

where �̄(t) = �(t) + ω(J )t , and S
(1)
k ≡ S(1)(θk, Jk, tk; ε), S(1)

k+1 ≡ S(1)(θk+1, Jk, tk+1; ε).
One should note that the transformations in the forms (15), (16) are general and

independent of the assumptions on the Hamiltonian function H(θ, I, t), like the ansatz (6).
The forms (17), (19) of the map (8) are invariant with respect to a change of the time sequences
k ↔ k + 1, i.e., the backward map (θk+1, Ik+1) → (θk, Ik) may be obtained from the forward
map (8) by simply reversing the sequence of the canonical transformations. This also means
that if S(1)(θk+1, Jk, tk+1) �= 0, then S(1)(θk, Jk, tk) �= 0.

3. The perturbation theory in finite time intervals

Determination of the generating function S(θ, J, t) by integrating the Hamilton–Jacobi
equation (9) is a rather difficult task. The traditional methods used to study the Hamilton–Jacobi
equation are based on perturbation theory [2,48]. The solutions are sought as a series in powers
of the perturbation parameter ε for an unlimited time domain. However, these approaches
encounter difficulties related to the divergence of the series due to the small denominators.
Below, we present the version of the perturbation theory for the Hamilton–Jacobi equations in
the finite time interval tk < t < tk+1 which does not encounter this problem.

Suppose for a moment that the perturbation parameter ε is small and we seek the generating
function S(1)(θ, J, t; ε) as series in powers of ε:

S(θ, J, t) = θJ − H0t + H(J ; ε)t + εS1(θ, J, t) + ε2S2(θ, J, t) + · · · . (20)

Similarly, we expand the new Hamiltonian H(J ; ε) as well:

H(J ; ε) = H0(J ) + εH1(J ) + ε2H2(J ) + · · · . (21)
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Expanding the Hamilton–Jacobi equation (9) in a series in powers of ε and equating the terms
of the same powers of ε, we obtain that H0(J ) = H0(J ) and the equations for the expansion
coefficients Si ≡ Si(θ, J, t) of the generating function S(1)(θ, J, t; ε):

∂S1

∂t
+

∂H0

∂J

∂S1

∂θ
= H1(J ) − H1(θ, J, t), (22)

∂Si

∂t
+

∂H0

∂J

∂Si

∂θ
= Hi (J ) − Fi(θ, J, t), i � 2, (23)

whereFi(θ, J, t) are polynomial functions of derivatives ∂S1/∂θ, . . . , ∂Si−1/∂θ . In particular,
for F2(θ, J, t) we have

F2(θ, J, t) = 1

2

∂2H0

∂J 2

(
∂S1

∂θ

)2

+
∂H1

∂J

∂S1

∂θ
. (24)

The equations (22), (23) should be complemented with the appropriate initial condition
in the time interval tk < t < tk+1.

The equations (22), (23) for Si(θ, J, t) are the first-order partial differential equations and
may be solved by the method of characteristic equations. The right-hand sides of (22), (23)
may be written as total time derivatives of Si ≡ Si(θ, J, t) taken along the trajectory
(θ(t), J (t)) determined by the unperturbed Hamiltonian H0(J ), i.e., θ(t) = θ0 +ω(J )(t − t0),
J (t) = constant. Then the solutions of equations (22), (23) are

Si(θ, J, t) = Si0(J ) − Hi (J )(t − t0) −
∫ t

t0

Fi(θ(t
′), J, t ′) dt ′, (25)

satisfying the initial condition Si(θ, J, t) = 0 at the time instant t = t0. In (25), θ(t ′) =
θ + ω(J )(t − t ′) is the unperturbed trajectory, and Si0(J ) is an arbitrary function of J . One
can take Si0(J ) ≡ 0. There are two parameters in (25): Hi (J ) and a time parameter t0
(tk � t0 � tk+1) which should be appropriately chosen.

Suppose that the functions Fi(θ, J, t) have the following Fourier expansion:

Fi(θ, J, t) = F
(i)
0 (J ) +

∑
m �=0

F (i)
mn(J ) exp(imθ − in�t). (26)

Choosing Hi (J ) = F
(i)
0 (J ), the solution (25) may be rewritten as

Si(θ, J, t) = −(t − t0)
∑
m,n

c(xmn)F
(i)
mn(J ) exp[i(mθ − n�t)], (27)

where xmn = [mω(J ) − n�](t − t0) and c(x) = a(x) + i b(x), with

a(x) = 1 − cos x

x
, b(x) = sin x

x
, (28)

is a localized complex function near its origin x = 0. Its real (a(x)) and imaginary (b(x))
parts have finite values at x = 0 (a(0) = 0, b(0) = 1) and decay for large values |x| � 1 as
shown in figure 1.

For the perturbed part of the Hamiltonian H1(θ, I, t), equation (7), the first-order
generating function S1(θ, J, t) takes the form

S1(θ, J, t) = −(t − t0)
∑
m,n

|Hmn(J )|

× [a(xmn) sin(mθ − n�t + χmn) + b(xmn) cos(mθ − n�t + χmn)], (29)

where Hmn(J = |Hmn(J )| exp(iχmn). One should note that the determination of the
higher-order generating functions Si(J, θ, t) (i � 2) requires rather complicated analytical
calculations. We have calculated the second-order generating function S2(J, θ, t) which is
presented in the appendix.
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Figure 1. Oscillating functions a(x) (curve 2) and b(x) (curve 1).

Consider the expansion series near the resonant frequencies (ω(J ),�) (mω(J )−n� = 0)
in more detail. From (27) and (29) it follows that the actual expansion parameter in the
series (20) for the resonant values of J is not the perturbation parameter ε itself, but its
combination with the time interval (t − t0), i.e., µ = ε(t − t0)

ν with some exponent ν. The
value of the exponent ν depends on the Hamiltonian perturbationH1(I, θ, t) and usually ν � 1.
Indeed, the first term εS1 in (20) is proportional to ε(t − t0). The second-order generating
function S2 determined according to (25) and (24) gives ε2S2 ∼ ε2[c1(t − t0)

2 + c2(t − t0)
3],

where c1 and c2 are coefficients (c1, c2 ∼ 1) (see the appendix). Similarly, for the higher-order
terms in (20), one can at least have the estimates εnSn ∼ εn(t − t0)

n, because the functions
Fi(θ, J, t) (i � 2) in (25) are polynomials in derivatives of lower-order generating functions
S1, . . . , Si−1 with respect to θ . As we will see in section 5, µ = ε(t − t0)

2 for the simple
Hamiltonian problem of particle motion in a perturbed field of a single wave. This nature of
the expansion allows one to apply the perturbation theory to the generating function S(θ, J, t)

not only for the small values of the perturbation parameter ε, but also for its large values, by
taking a time interval τ = tk+1 − tk which keeps the product µ = ε(t − t0)

ν small.
It is interesting to compare the finite-time perturbation series with ones over infinite time

intervals. The classical perturbation theory based on the Lindstedt’s method gives the following
solution of equations (22), (23) (see, e.g., [2]):

Si(θ, J, t) = −
∑
m �=0

F (i)
mn(J )

exp[i(mθ − n�t)]

i(mω(J ) − n�)
, (30)

containing the small denominators (mω(J ) − n�) for numbers (m, n) �= 0. The terms Si are
not defined for the values of J where the denominators (mω(J ) − n�) are zero or too small.
Small denominators may lead to the divergence of a series of the type of (20) and present
fundamental difficulties in the perturbation theory.

Unlike (30), the finite-time perturbation series (20), (27), (29) do not contain divergent
coefficients near the resonant frequencies (ω(J ),�) (mω(J ) − n� = 0). The small
denominators are replaced by the oscillating functions a(xmn), b(xmn), xmn = [mω(J ) −
n�](t − t0) which take finite values near the resonant frequencies (ω(J ),�). Due to the
presence of the localized functions a(xmn), b(xmn), the main contribution to the perturbation
series (20) at the given value of J comes just from the terms (m, n) for which |(mω(J ) −
n�)(t − t0)| � π . How can this property guarantee the convergence of the perturbation series
and how does it depend on the time interval t − t0? These problems are closely related to the
KAM theory and it would require substantial efforts to resolve them.
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4. The symmetric map and the perturbed twist maps

The generating functions determined in the previous section depend on the time parameter
t0. By appropriately choosing this parameter in the interval [tk, tk+1], one can obtain different
forms of the mapping. If t0 = tk+1, then the generating function S(1)(θ, I, t) at the time instant
t = tk+1 is identically zero, i.e., S(1)(θk+1, Ik+1, tk+1) ≡ 0. Then the map (17)–(19) takes the
form

Ik+1 = Ik − ε
∂S(1)

∂θk
, θk+1 = θk + ω(I)τ + ε

∂S(1)

∂Ik+1
, (31)

(S(1) ≡ S(1)(θk, Ik+1, tk; ε)), known as the perturbed twist map [3,8]. Similarly, taking t0 = tk
one can obtain the alternative form the perturbed twist map:

Ik+1 = Ik + ε
∂S(1)

∂θk+1
, θk+1 = θk + ω(I)τ − ε

∂S(1)

∂Ik
, (32)

where S(1) ≡ S(1)(θk+1, Ik, tk+1; ε). These two forms of the perturbed twist map are not
invariant with respect to the backward–forward transformations (k ↔ k + 1).

Another important form of the map may be obtained by choosing the time parameter t0
exactly at the middle of the time interval [tk, tk+1], i.e. t0 = (tk + tk+1)/2 = (k + 1/2)τ . Such a
representation of the map (17)–(19) we call the symmetric map. The accuracy of the symmetric
map is much higher than those of the perturbed twist maps. Indeed, the expansion parameter
µ of the generating functions S(1) near the resonant frequencies for the symmetric map is
µ = ε(τ/2)ν , while for the perturbed twist maps (31), (32) it is equal to µ = ετ ν . Therefore,
errors due to truncation of the power series of the generating function (20) in µ are smaller for
the symmetric map than for the perturbed twist map. As we will see in the next section, the
symmetric map gives excellent agreement with the exact behaviour of the Hamiltonian system.

The symmetric map is also invariant with respect to the change of time sequences
k ↔ k + 1, i.e., the backward map (θk+1, Ik+1) → (θk, Ik) may be obtained from the forward
map (8) by simply reversing the sequence of the canonical transformations.

5. Example 1. Particle in a single-wave field

In order to study the accuracy of maps, we consider a simple, completely integrable Hamiltonian
system, namely, a particle motion in a single-wave perturbation, i.e.,

H(θ, I, t) = I 2

2
− ε cos(θ − �t). (33)

In a coordinate system running with the phase velocity of the wave, i.e., q = θ−�t, p = I−�,
it describes a pendulum with the frequency of the small-amplitude oscillations ω0 = √

ε. The
corresponding Hamiltonian function H0(q, p) = H(q + �t, I − �, t) is a constant of the
motion.

The system has the elliptic fixed points at (y = 2πs, p = 0). The hyperbolic fixed points
are at (θ = π(2s + 1), p = 0) (s = 0,±1,±2). For −ω2 � H � ω2 the motion is trapped
and the trajectory is oscillating near the elliptic fixed points. The frequency of these non-linear
oscillations is

ω(H) = πω0

2K(k)
, k2 = H + ω2

0

2ω2
0

, (34)

where K(k) is the complete elliptic integral with a module k. For H > ω2 the motion is
rotational.
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We will consider the amplitude of the wave ε as a perturbation parameter. Then the
unperturbed HamiltonianH0(I ) = I 2/2 determines the unperturbed motion with the frequency
ω(I) = dH0(I )/dI = I : θ = θ0 + ω(I)(t − t0), I = constant.

5.1. The first- and second-order generating functions

According to (22), (26), and (29) the first-order generating function is

S1(θ, J, t) = − 1

ω − �
[sin(θ + ω(t0 − t) − �t) − sin(θ − �t)]

= (t − t0)[a(x) sin(θ − �t) + b(x) cos(θ − �t)], (35)

where a(x) and b(x) are oscillating functions (28), and x = (J − �)(t − t0).
The second-order term S2(θ, I, t) may be found according to (25) by integrating over

the function F2(θ, I, t), equation (24). Using the Hamiltonian H0(q, p) and the generating
functions S1(θ, J, t) (35), we obtain

F2(θ, J, t) = 1

2

∂2H0

∂J 2

(
∂S1

∂θ

)2

= 1

4ω2

∂2H0

∂J 2
[2 − 2 cos[ω(t − t0)] + cos[2θ + 2ω(t0 − t) − 2�t]

+ cos(2θ − 2�t) − 2 cos[2θ + ω(t0 − t) − 2�t]]. (36)

Integrating over the function (36) gives the second-order generating function S2(θ, J, t) (see
also the appendix):

S2(J, ϑ, t) = −
∫ t

t0

F2(J, θ(t
′), t ′) dt ′

= − (t − t0)
3

4
[A0(x) + A2(x) sin(2θ − 2�t) + B2(x) cos(2θ − 2�t)], (37)

where

A0(x) = 2

x2

[
1 − sin x

x

]
, (38)

A2(x) = 1

x2

[
sin 2x +

1 − 4 cos x + 3 cos 2x

2x

]
, (39)

B2(x) = 1

x2

[
cos 2x +

4 sin x − 3 sin 2x

2x

]
(40)

are localized functions similar to the functions a(x), b(x), equation (28), in the Fourier
expansion of the first-order generating function S1(J, θ, t), equation (29). Note that the
functions A0(x), A2(x), B2(x) are obtained from the localized functions U(x, y), V (x, y)

of two variables (x, y) introduced in the appendix in the limits x → y and x → −y, namely
A0(x) = V (x,−x), A2(x) = U(x, x), B2(x) = V (x, x). Their plots are presented in figure 2.
These functions have finite values at x = 0, i.e., at the resonant condition ω(J ) − � = 0, and
decay for large values of x.

The map (17)–(19) for the Hamiltonian system (33) may be rewritten in normalized
variables (x, ϑ), x = (J − �)(t − t0), ϑ = θ − �t . Using (35), (37), the generating function
S(1) for the corresponding map (xk, ϑk) → (xk+1, ϑk+1) may be presented in the form

εS(1)(ϑ, x, t) = µS1(ϑ, x, t) + µ2S2(ϑ, x, t) + O(µ3), (41)
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Figure 3. Several orbits of the Hamiltonian system (33) in the (θ, I ) plane obtained from the
symmetric map (dotted curves) and the perturbed twist map (dashed curves). Solid curves represent
the exact orbits. The parameters are ε = 0.03, � = 0.

where

S1(ϑ, x, t) = a(x) sin ϑ + b(x) cosϑ,

S2(ϑ, x, t) = −[A0(x) + A2(x) sin 2ϑ + B2(x) cos 2ϑ].

Here µ = ε(t − t0)
2 is an expansion parameter. As was mentioned in section 4, for the

symmetric map the time instant t0 = (k + 1/2)τ and therefore the expansion parameter
µ = ετ 2/4. For the perturbed twist map the time t0 = tk+1 (or t0 = tk), and the corresponding
expansion parameter is larger, i.e., µ = ετ 2.

5.2. Comparison of the symmetric map and the perturbed twist map

Before we made estimates of the accuracy of maps for the model (33), we compared the two
forms of the map: the symmetric map (17)–(19) and the perturbed twist map (31). Several
trajectories of the system in the phase plane (θ, I ) obtained from the symmetric map and
the perturbed twist map (31) are presented in figure 3 using the first-order generating function
S(1) = S1(I, θ, t). The value of ε is taken equal to 0.03, and the map period τ is 2π . The initial
conditions of trajectories were (θ0, I0) = (0, 0.03), (0, 0.2), (0, 0.33), (0,±0.35), (0,±0.45).
Solid curves represent the exact trajectories of the pendulum; dotted curves and dashed curves
correspond to the symmetric map and the perturbed twist map, respectively. As can be
seen from figure 3, the symmetric map describes the trajectories much more closely than
the perturbed twist map. The phase-space curves obtained from the symmetric map are
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Figure 4. Relative root mean square energy errors ‖H − H0‖2/Hs (Hs = ω2
0) for the system (33)

as a function of oscillation amplitude I . The parameter ε = ω2
0 = 0.01. (a) Perturbation frequency

� = 0; (b) � = 1. Curve 1 corresponds to the SI (see the text) with the integration step
/t = π/100. The time step of the map is τ = π . Curve 2 corresponds to the map with the
first-order generating function S(1) = S1, equation (35), and curve 3 to that with S(1) = S1 + εS2,
equation (37).

symmetric with respect to the axes I = 0 and θ = π , similarly to the exact trajectories,
while the trajectories of the perturbed twist map are asymmetric.

5.3. Accuracy of the symmetric map

The accuracy of the symmetric map is studied by integrating the Hamiltonian system (33) using
the map and comparing the result with the exact solution. We also integrated the model (33)
by standard symplectic integration methods. For this purpose, we have chosen one of the most
accurate methods, namely the fifth-order explicit Runge–Kutta method that was developed by
McLachlan and Atela [49]. The method was applied to the separable Hamiltonian of the form
H(p, q) = T (p) + V (q) with the quadratic kinetic part T (p) = p2/2.

One should note that from the computational point view the symmetric mapping (17)–(19),
as well as the perturbed twist mappings (31), are implicit methods. The variables Jk in the first
set of equations (17) and θk+1 in the second set of equations (19) are defined implicitly, and they
should be found by solving corresponding algebraic equations. For this purpose we have used
Newton’s method (or the Newton–Raphson method) which has a high rate of convergence [50].
As an initial value in the iterative procedure, one can take Ik in the first equation of (17), and
�̄k+1 in the second equation of (19), because the differences |Jk − Ik| and |�̄k+1 − θk+1| are of
the order of the small expansion parameter µ, i.e., ε|∂S(1)/∂θ | ∼ µ � 1.

We have considered two perturbations, a time-independent one (� = 0) and a time-
dependent one (� = 1). The amplitude ε is taken equal to ε = ω2

0 = 0.01. We have taken a
set initial conditions (θ = 0, I = Ii) (� � Ii � � + Is) for the trapped orbits and integrated
the system up to t = 4π × 104 by means of the symmetric map and the symplectic integrator
of McLachlan and Atela (abbreviated as SI). Here Is = 2ω0 is the value of the amplitude I

at the separatrix. The root mean square energy errors ‖H − H0‖2 are calculated over all time
instants tk = 2πk (k = 1, . . . , N = 2 × 104), i.e.,

‖H − H0‖2
2 = 1

N

N∑
k=1

(H(θk, Ik, tk) − H0)
2.
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Figure 5. As figure 4, but for different integration steps of the SI and the symmetric map. Solid
curves 1–3 correspond to the SI with the integration steps /t = π/100, π/300, and π/600,
respectively. Dashed curves 4–6 correspond to the map with the first-order generating function
S(1) = S1 and the time steps τ = 2π , π , and π/2, respectively. The other parameters are the same
as in figure 4.

They are shown in figure 4 as a function of the oscillation amplitude Ii : (a) shows the time-
independent case, � = 0, and (b) the time-dependent case, � = 1. The time step of the map
is τ = π , and the integration step of the SI is /t = π/100. Curve 1 corresponds to the SI,
and curves 2, 3 show the map results. Curve 2 corresponds to the map with the generating
function S(1) at the first order of perturbation parameter ε, equation (35), i.e., S(1) = S1, and
curve 3 corresponds the case where the second-order generating function S2, equation (37), is
included as well, i.e., S(1) = S1 + εS2.

As one can see from figure 4, the energy errors of the SI in the time-independent case are
several orders smaller than for the map. However, in the time-dependent case the accuracy
of the SI is significantly reduced whereas the accuracy of the mapping has not been changed.
Moreover, the energy errors of the SI become two orders higher than for the maps. Inclusion
of the second order of the generating function S2 improves the accuracy of the map by more
than two or three orders. In particular, it reduces the energy error by a factor of 167 at the
value of (I − �)/Is = 0.5. At this value of I the ratio of energy errors of the SI, the map
with the first-order generating function, and that with the second-order generating function is
832:167:1 for the time-dependent case (� = 1). Therefore, the accuracy of the map at the
fixed time step τ does not depend on the frequency �, while the accuracy of the SI depends
significantly on � and reduces with increasing � for a fixed integration step /t .

One can reduce the energy errors by taking smaller integration steps /t in the SI, as well
as time steps τ in the map. This is shown in figure 5. Solid curves 1–3 correspond to the
SI with the integration steps /t = 2π/200, 2π/600, and 2π/1200, respectively. Dashed
curves 4–6 correspond to the map with the first-order generating function S(1) = S1 and the
time steps τ = 2π , 2π/2, and 2π/4, respectively. The other parameters are the same as in
figure 4(b). One should note that the energy errors of the SI, as well as those of the maps, are
dependent on the amplitude of the oscillations δI = I − �. The energy errors of the SI with
the integration step /t = 2π/200 are nearly the same as for the map with time step τ = 2π .
The computational time required for the map is almost one order shorter than that required for
the SI.

The accuracy of the map and the SI are also studied by computing the non-linear
oscillation frequency ω(I) of the trapped orbits and comparing it with the exact value ωexact(I ),
equation (34). The relative difference of frequencies /ω/ω = [ω(I) − ωexact(I )]/ω is
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Figure 6. Relative differences /ω(I)/ω(I) between the non-linear oscillation frequency ωm(I)

calculated from the mapping and its exact value ω(I), equation (34), for different amplitudes of
oscillations I . Solid curves: ε = 0.01, τ = 2π/2; dashed curves: ε = 1, τ = 2π/10. Curve 1
corresponds to the map with the generating function S(1) = S1, curve 2 to that with S(1) = S1 +εS2.
Curves 3 correspond to the SI with /t = π/100. Frequency � = 1.

plotted in figure 6 as a function of the relative oscillation amplitudes (I − �)/Is . The solid
curves correspond to the perturbation ε = 0.01, and the dashed curves to ε = 1. The
perturbation frequency is � = 1 for both cases. The time step of the map is taken equal to
τ = 2π/2 for ε = 0.01 and τ = 2π/20 for ε = 1. The solid and dashed curves 1 show
results obtained from the mapping with the first-order generating function S1, equation (35),
and curves 2 correspond to the mapping with the first-order and second-order generating
functions (37), i.e., S(1) = S1 + εS2. Curve 3 shows the results for the SI with the integration
step /t = 2π/200.

First of all, we can see that the relative accuracy of the map for the large perturbation ε = 1
and the short time step τ = 2π/20 is the same as for the small perturbation ε = 0.01 and
the long time step τ = 2π/2, because the expansion parameter µ = ετ 2/4 takes equal values
for the two cases. Secondly, the difference /ω/ω obtained by the mapping decreases with
increasing oscillation amplitude δI = I−�, while it grows monotonically for the SI. Inclusion
of the second-order generating function S2 improves the accuracy of the map by more than
two orders. For the small oscillation amplitude δI , the accuracy of the SI is two orders higher
than for the map with S(1) = S1, and of the same order as for the map with S(1) = S1 + εS2.
However, in order to keep the same accuracy of the SI for the higher perturbation frequency
� > 1, one has to take even smaller integration steps /t .

Therefore, for the exact integrable system we have shown that the symmetric map with
large time steps τ of the order of the perturbation period 2π/� (τ ∼ 2π/�) can achieve the
same higher-order accuracy of calculations as the powerful symplectic integration methods
with integration steps /t two orders smaller than τ .

6. Example 2. Standard Hamiltonian

The standard map is a basic model in Hamiltonian chaos theory and has important applications
in the problems of plasma physics [9, 51]. However, in spite of its extensive applications and
studies during the past two decades, no rigorous derivations of the standard map have been
proposed so far. In this section we discuss this problem, considering an important model of the
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Figure 7. Poincaré sections for the standard Hamiltonian obtained by means of (a) the symplectic
integrator with the time step /t = 2π/1100; (b) the symplectic map with the period τ = 2π ;
(c) the conventional standard map; (d) the symmetric standard map. The parameters are K = 0.7,
M = 10.

non-integrable Hamiltonian system, namely the standard Hamiltonian (see, for example [51]):

H(I, θ, t) = I 2

2
+

K

4π2

M∑
n=−M

cos(θ − nt), (42)

where K is the stochasticity (perturbation) parameter. The system (42), in particular, describes
the motion of a particle in a wave field with a broad spectrum. It is widely assumed that in
the limit of large number of modes M → ∞, the system (42) is reduced to the celebrated
Chirikov–Taylor map [3, 7]:

Is+1 = Is +
K

2π
sin θs, θs+1 = θs + 2πIs+1, (43)

where (Is, θs) = (I (t = 2πs), θ(t = 2πs)) (s = 0,±1,±2, . . .). The derivation is based
on the fact that in the limit M → ∞ the sum of the right-hand side of (42) is reduced to
the sum of an infinite number of the delta functions δ(t − ts). However, the perturbation has
singularities at the time instants t = ts and the variables I are not defined at these moments.
By appropriately defining the integration along the delta function, one can obtain the standard
map in the form (43) where Is = I (t = 2πs − 0), or in the form

θs+1 = θs + 2πIs, Is+1 = Is +
K

2π
sin θs+1, (44)

where Is = I (t = 2πs + 0). Both forms of the map (43), (44) may equivalently represent the
standard Hamiltonian at the limit M → ∞.
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However, from the physical point of view one can expect these maps to closely describe
the Hamiltonian system (42) for large but finite mode number M . As is shown in figure 7, the
standard map (43) does not reproduce Poincaré sections of the system (42).

A mathematically correct and physically reasonable approach would consist of two steps:
first, obtaining the map for the finite mode numberM; and then, considering the limitM → ∞.
Such a method would avoid the uncertainty in the integration along the delta function. It has
been shown quite recently in [45] that the usual procedure of canonical change of variables in
the Hamiltonian (42) gives the symmetric standard map

Js = Is +
K

4π
sin θs, θs+1 = θs + 2πJs, Is+1 = Js +

K

4π
sin θs+1, (45)

for large M � 1. However, it was supposed that the perturbation parameter K was small,
i.e., ε = K/2π � 1. Below, using the method proposed in section 3, we will show that the
symmetric standard map (45) is also valid for arbitrarily large values of K . The standard maps
of the forms (43) and (44) may be obtained from the symmetric standard map (45) for the
variables (Js, θs).

We first study some properties of the generating function S(1), equation (29), of the
system (42). It may be written in the form

S1(J, ϑ, t) =
M∑

n=−M

1

J − n
{sin(θ − (J − n)(t − t0) − nt) − sin(θ − nt)}. (46)

Consider the asymptotic behaviour of S1(J, ϑ, t) at the limit of large mode numbers M � 1.
Using the formulae

∞∑
n=−∞

sin(nt + α)

J − n
= π

sin πJ
sin([t]J + α),

∞∑
n=−∞

1

J − n
= π

tan πJ
,

where [t] = t − (2s + 1)π and 2πs < t < 2π(s + 1) (s = 0,±1,±2, . . .), one can show
that for the arbitrary time instants t, t0 in the interval 2πs < t, t0 < 2π(s + 1), the generating
function S1(J, ϑ, t) has the following asymptotics for large M � 1 (where |J | � M):

S1(J, ϑ, t) ∼ O(M−1). (47)

However, at the time instants t = ts = 2πs ± 0 and t0 in the interval 2πs < t0 < 2π(s + 1),
the generating function S1(J, θ, t) has a finite asymptotic value for M � 1, i.e.,

S1(θ, J, t = 2πs ± 0) = ±π cos θ + O(M−1). (48)

Then the second-order generating function S2(θ, J, t) defined according to (24), (25), and (42)
as

S2(θ, J, t) = −
∫ t

t0

F2(θ(t
′), J, t ′) dt ′, F2(θ, J, t) =

(
∂S1

∂θ

)2

, (49)

goes to zero at all time instants t for M → ∞. Similarly, the higher-order generating
functions Si(θ, J, t) (i > 2) vanish as well, because the polynomial functions Fi of the
derivatives ∂S1/∂θ, . . . , ∂Si−1/∂θ on the right-hand side of equations (23) tend to zero in the
limit M → ∞. Therefore, the generating function S(1)(θ, J, t) of the symmetric map (17)–
(19) is determined by the first-order generating function S1(θ, J, t) for arbitrary perturbation
parameter ε = K/4π2. The latter, determined by (48), gives the symmetric standard map (45).

Poincaré sections of the standard Hamiltonian (42), i.e., a sequence of phase-space
coordinates (Is, θs), are shown in figure 7 for the mode number M = 10 and the perturbation
parameter K = 0.7: (a) obtained from the SI with the integration step /t = 2π/1100;
(b) corresponding to the symmetric map with the time step τ = 2π ; (c) corresponding to the
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Figure 8. The difference |ωm − ωe| between the oscillation frequencies of the regular trapped
orbit of the standard Hamiltonian (42) calculated from the map (ωm) and the SI (ωe), as a function
of the integration step of the SI /t . Curve 1 corresponds to the map time step τ = 2π , curve 2
to τ = 2π/64. The initial coordinates of the orbit are (I0 = 2, θ0 = 0.6π ). The parameters are
K = 1.5, M = 10.

standard map (43), and (d) corresponding to the symmetric standard map (45). They are plotted
with the same set of initial coordinates. One can see that the symmetric map reproduces well
the Poincaré plot obtained from the SI. The symmetric standard map closely describes these
plots, whereas the corresponding plot obtained by the standard mapping is asymmetrically
deformed. The reason for this was explained in [45]; it is the case because the variables
(I, θ ) in the standard map (43) are not identical to the corresponding variables in the standard
Hamiltonian (42).

For moderate values of the perturbation parameter K ∼ 1, the motion of the standard
Hamiltonian is partially chaotic, consisting of areas of chaotic as well as regular behaviour.
First we study the accuracy of the symmetric map for regular orbits. For this we have computed
the frequency of non-linear oscillation of the trapped regular orbit. We have chosen the
perturbation parameter K = 1.5 and the mode number M = 10. At these parameter values
the motion has both regular and chaotic components. We study the regular orbit with the
initial coordinate at (I0 = 2, θ0 = 0.3). The difference between the frequencies (|ωm − ωe|)
calculated from the map (ωm) and the SI (ωe) is presented in figure 8 as a function of the
integration step /t of the SI. Curve 1 corresponds to the map time step τ = 2π , and curve
2 to τ = 2π/64. One can see that the accuracy of the map with the time step τ = 2π is the
same as for the SI with the integration step /t = 2π/1200, while the time step τ = 2π/64 of
the map corresponds to /t = 2π/12 800 for the SI. In the first case, the computational time
required for the SI is 40 times longer than that required for the map, and in the second case it
is five times longer.

The accuracy of the map was also tested by integrating the system forward in time up
to a certain time instant tmax , then reversing it back in time to the initial time instant t0. We
checked how close the orbit comes to the initial point. The accuracy significantly depends
on whether the orbit is regular or chaotic. For this test we have integrated the Hamiltonian
system (42) with the initial coordinate (I0, θ0) from the time instant t = 0 up to t = tmax

and reversed it back in time. Let If (t) and Ib(t) be the components of the forward orbit
and the backward orbit, respectively. The difference of these components |If (t) − Ib(t)| is
plotted in figure 9 as a function of tmax − t : (a) shows the case of the regular orbit with the
initial coordinates (I0 = 2, θ0 = 0.6π ); (b) corresponds to the chaotic orbit with coordinates
(I0 = 2, θ0 = 0.02π ).
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Figure 9. The accuracy of time reversal for the SI (curve 1) and the symmetric map (curve 2);
(a) for the regular orbit; (b) for the chaotic orbit. The initial coordinates of the regular orbit are
(I0 = 2, θ0 = 0.6π ), and those of the chaotic orbit are (I0 = 2, θ0 = 0.02π ). The integration step
of the SI is /t = 2π/4000; the map time step τ = 2π , tmax = 2π × 103. The other parameter are
the same as for figure 8.

In both figures curve 1 describes the results for the SI with the integration step /t =
2π/4000, and curve 2 is obtained for the map with the time step τ = 2π . One can see from
figure 9(a) that the accuracy of the map reversibility of the regular orbit is much higher than
for the SI even with very small integration steps: for tmax = 2π × 103 the regular orbit is
reversed back to the initial point with accuracy less than 10−10, while for the SI the accuracy
is of the order of 10−2.

From figure 9(b) it follows that the accuracy of the map is much higher too for the chaotic
orbits than for the SI. However, due to an exponential growth of round-up operation errors, the
time tmax for the reversal of the chaotic orbit to the initial point with the accuracy 10−10 is less
than tmax ≈ 2π × 50. The reversibility of chaotic orbits for the SI is much poorer. The much
better reversibility of the map is mainly due to its symmetric form, equations (17)–(19), which
is invariant with respect to the map-reversing transformation k ↔ k + 1, H → −H . The latter
property of the symmetric map expresses the invariance of the Hamiltonian equations (1) with
respect to the formal time-reversing transformation t → −t , H → −H .

7. Conclusions

In summary, we have developed a general method for construction of maps for the Hamiltonian
systems. It may be applied to the general class of Hamiltonian systems which may be composed
as a sum of a fully integrable system and the Hamiltonian perturbation. The perturbation is
not required to be small. The construction of the maps is based on the application of the
Hamilton–Jacobi method—particularly the Hamilton–Jacobi equation and Jacobi’s theorem—
to the system in finite time intervals. The generating functions of the maps are solutions of
the Hamilton–Jacobi equations in finite time intervals. They are found using the perturbation
method by seeking the solutions as a series in powers of a small expansion parameter. It appears
that the expansion parameter near the resonant frequencies is determined by the product of the
perturbation parameter and the time step of the map. In particular, this allows one to apply the
mapping method to a system with moderately large perturbation by taking the map time step
sufficiently small.



The Hamilton–Jacobi method and Hamiltonian maps 2829

We have studied the accuracy of the mapping method and compared it with those of the
conventional symplectic integration methods, and in particular with the most accurate fifth-
order Runge–Kutta symplectic integrator proposed by McLachlan and Atela [49]. It was
found that the maps with large time steps comparable with the characteristic timescale of the
system (e.g., a perturbation period) have the same accuracy as the symplectic integrator with
integration steps two or three orders smaller. It is even more important that the accuracy of
the map is not dependent on the perturbation frequency, and thus one can integrate highly
oscillatory Hamiltonian systems—which is a challenging problem in numerical analysis [52].

We have left open some problems concerning the convergence of the finite-time
perturbation series and the transition from finite times to infinite ones. The study of these
problems is closely related to the perturbation theory for conditionally periodic motion of a
system over infinite time intervals—the KAM theory—and requires special investigation.
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Appendix. The second-order generating function

Here we calculate the second-order generating function S2(J, θ, t) for the Hamiltonian
function:

H(I, ϑ, t) = H0(I ) + εH1(I, ϑ, t),

H1(I, ϑ, t) = ε
∑
m

Hm(I) cos(m · ϑ + χm), (A.1)

where ϑ = (θ1, . . . , θn,�t), m = (m1, . . . , mn, n), m · ϑ = m · θ + n�t . We write the
first-order generating function S1(J, ϑ, t) in the form

S1(J, ϑ, t) = −
∫ t

t0

H1(J, ϑ(t ′), t ′) dt ′

=
∑
m

Hm(J )

m · ω [sin(m · ϑ + m · ω(t0 − t) + χm) − sin(m · ϑ + χm)]. (A.2)

According to (23) and (24), the second-order generating function S2(J, θ, t) is

S2(J, ϑ, t) = −
∫ t

t0

F2(J, ϑ(t ′), t ′) dt ′, (A.3)

where

F2(I, ϑ, t) = 1

2

∂2H0

∂Ji ∂Jj

∂S1

∂ϑi

∂S1

∂ϑj

+
∂H1

∂Ji

∂S1

∂ϑi

. (A.4)

In (A.4), summation over repeated indices i, j (i, j = 1, . . . , n) is assumed. Putting (A.1)
and (A.2) into (A.4), we obtain

F2(J, ϑ, t) = 1

2

∑
m,m′

mi

∂2H
(1)
0

∂JiJj

m′
j

Hm(J )Hm′(J )

m · ωm′ · ω
× [cos(m · ϑ + m · ω (t0 − t) + χm) − cos(m · ϑ + χm)]

× [cos(m′ · ϑ + m′ · ω (t0 − t) + χm′) − cos(m′ · ϑ + χm′)]
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+
∑
m,m′

m′
j

∂Hm

∂Jj

Hm′(J )

m′ · ω cos(mϑ + χm)

× [cos(m′ · ϑ + m′ · ω (t0 − t) + χm′) − cos(m′ · ϑ + χm′)]. (A.5)

We replace the products of the trigonometric functions in (A.5) by their sum and integrate each
of them using the integral

Fms =
∫ t

t0

dt ′ cos(m · ϑ(t ′) + s · ω(t0 − t ′) + χ)

= a(xm, xs) sin(m · ϑ + χ) + b(xm, xs) cos(m · ϑ + χ), (A.6)

where xm = m · ω(t − t0) and

a(x, y) = −(t − t0)
cos x − cos y

x − y
, b(x, y) = (t − t0)

sin x − sin y

x − y
.

Then, combining the trigonometric functions, we obtain the following expression for the
generating function (A.3):

S2(I, ϑ, t) = − (t − t0)
3

4

∑
m,m′

mi

∂2H0

∂Ji ∂Jj

m′
jHm(J )Hm′(J )

× {A(+)
m,m′ sin(m + m′) · ϑ + B

(+)
m,m′ cos(m + m′) · ϑ

+ A
(−)
m,m′ sin(m − m′) · ϑ + B

(−)
m,m′ cos(m − m′) · ϑ}

− (t − t0)
2

2

∑
m,m′

m′
j

∂Hm(J )

∂Jj

Hm′(J )

× {C(+)
m,m′ sin(m + m′) · ϑ + D

(+)
m,m′ cos(m + m′) · ϑ

+ C
(−)
m,m′ sin(m − m′) · ϑ + D

(−)
m,m′ cos(m − m′) · ϑ}, (A.7)

where the coefficients A
(±)
m,m′ , B

(±)
m,m′ , C

(±)
m,m′ , and D

(±)
m,m′ :

A
(+)
m,m′ = U(xm, xm′), A

(−)
m,m′ = −U(xm,−xm′),

B
(+)
m,m′ = V (xm, xm′), B

(−)
m,m′ = −V (xm,−xm′),

(A.8)

C
(+)
m,m′ = W(xm, xm′), D

(+)
m,m′ = Y (xm, xm′),

C
(−)
m,m′ = −W(xm,−xm′), D

(−)
m,m′ = −Y (xm,−xm′),

(A.9)

are expressed in terms of four functions U(x, y), V (x, y), W(x, y), and Y (x, y) of two
variables x, y:

U(x, y) = 1

xy

[
sin(x + y) +

cos(x + y) − cos y

x
+

cos(x + y) − cos x

y
+

1 − cos(x + y)

x + y

]

(A.10)

V (x, y) = 1

xy

[
cos(x + y) − sin(x + y) − sin y

x
− sin(x + y) − sin x

y
+

sin(x + y)

x + y

]
(A.11)

W(x, y) = − 1

y

[
cos(x + y) − cos y

x
+

1 − cos(x + y)

x + y

]
(A.12)

Y (x, y) = 1

y

[
sin(x + y) − sin y

x
− sin(x + y)

x + y

]
. (A.13)
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Figure A.1. Functions (a) U(x, y) and (b) V (x, y).

These functions have the following asymptotics at y → x:

U(x, x) = 1

x2

[
sin 2x +

1 − 4 cos x + 3 cos 2x

2x

]
(A.14)

V (x, x) = 1

x2

[
cos 2x +

4 sin x − 3 sin 2x

2x

]
, (A.15)

U(x,−x) = 0, V (x,−x) = 2

x2

[
1 − sin x

x

]
. (A.16)

The functions U(x, y), V (x, y), W(x, y), and Y (x, y) of the two variables x, y are localized in
the finite region |x| � π, |y| � π . They decay at large values of x, y. The functions U(x, y),
V (x, y) are shown in figure A.1.
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